$\mathrm{N}\left(-1.0 \mathrm{e} \dot{\mathrm{A}}^{-3}\right)$. One other minimum was found at $0.25,0.25,0\left(-1.4 \mathrm{e}^{-3}\right)$.

Discussion. The anion consists of six Cl atoms in a regular octahedral arrangement about a central Tc atom. The $\mathrm{Tc}-\mathrm{Cl}$ bond distance is 2.3531 (5) \AA. This value is in close agreement with the value of 2.35 (1) \AA found previously for the analogous K salt (Elder et al., 1967). It is significantly less than the value of $2.46 \AA$ predicted from ionic radii (Shannon, 1976). Ammonium ions are known to have low barriers to rotation in many crystals [see, for example, the recent review by Hüller (1977)|. This is presumably the reason why the H atoms in this structure could not be successfully located.

All calculations were performed on an Amdahl 470/V6 computer located at the University of Cincin-
nati. A locally modified version of XRAY 67 (Elder, 1974) was used for all calculations. This study was supported by the National Institutes of Health (Grant No. HL-21276-01).

References

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Elder, M., Fergusson, J. E., Gaines, G. J., Hickford, J. H. \& Penfold, B. R. (1967). J. Chem. Soc. A, pp. 14231425.

Elder, R. C. (1974). Inorg. Chem. 13, 1037-1042.
Hüller, A. (1977). Phys. Rev. B, 16, 1844-1857.
International Tables for X-ray Cry'stallography (1974). Vol. IV, pp. 148-150. Birmingham: K ynoch Press.
Schwocau, K. (1964). Z. Naturforsch. Teil A, 19, 12371238.

Shannon, R. D. (1976). Acta. Cryst. A 32, 751 1-767.

Structure of Orthorhombic CeS_{2} Prepared at 1773 K and 5.5 GPa

By Yasunori Yanagisawa
Nara University of Education, Nara 630, Japan
Fumikazu Kanamaru
Faculty of Engineering, Okayama University, Okayama 700, Japan
and Shoichi Kume
College of General Education, Osaka University, Toyonaka 560, Japan

(Received 6 May 1978; accepted 12 September 1978)

Abstract

P{ }_{2}{ }_{1} a, a=8 \cdot 103\) (2), $b=16.221$ (2), $c=$ 4.093 (1) $\AA, Z=8$ and $D_{x}=5.06 \mathrm{Mg} \mathrm{m}^{-3}$. The structure is roughly expressed as the stacking of three kinds of layers A, B and C parallel to (010) with layer sequence $A B C A C B A$. The layer A consists of S ions and the layers B and C of Ce and S ions. Each Ce atom is coordinated to nine S atoms, the average $\mathrm{Ce}-\mathrm{S}$ distance being 3.01 (2) \AA. All S ions in the A layer form pairs, the bond length of the pair being 2.18 (2) \AA, while the distances between unpaired S atoms are in the range 3.03 to $4.14 \AA$. The difference between the orthorhombic and monoclinic structures is primarily in the layer sequence.

Introduction. Cerium polysulphide, CeS_{2}, crystallizes in the monoclinic form with a pseudocubic symmetry (Picon \& Patrie, 1956; Flahaut \& Guittard, 1956;

Marcon \& Pascard, 1968). A polymorphic phase, which is isostructural with orthorhombic LaS_{2}, has been synthesized under pressure (Yanagisawa \& Kume, 1973). Single crystals were grown at 1773 K and $5 \cdot 5 \mathrm{GPa}$. The size of each grain was approximately $0.2 \times 0.2 \times 0.1 \mathrm{~mm}$.

The symmetry was orthorhombic and systematic extinctions were $h k 0$ with $h=2 n+1$ and $0 k l$ with $k+l$ $=2 n+1$, indicating that the space group was either $P n 2_{1} a$ or Pnma. A set of three-dimensional intensity data of 688 reflections to $\sin \theta / \lambda=0.75 \AA^{-1}$ were collected with a Rigaku Denki four-circle diffractometer using monochromated Mo K_{1} radiation. The intensity data were corrected for Lorentz and polarization factors, but no absorption correction was made. The structure was solved from a Patterson map. Refinement was carried out by the block-diagonal least-squares method
with the computer program $R S D L S$-3 (Ashida, 1973) until the maximum shift of each parameter became less than $\frac{1}{20}$ of its e.s.d. The atomic scattering factors for Ce and S were taken from International Tables for X-ray Crystallography (1962). R decreased to 0.084 in the case of Pn2, a, while it remained at 0.35 for Pnma. Thus the space group was determined as $P n 2_{1} a$. The weighted R was 0.088 for $w=1$ and this is the minimum of values of $R_{w}=\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} \mid\right.$ $\left.\sum w \mid F_{o}{ }^{12}\right]^{1 / 2}$.

Discussion. The positional parameters and the interatomic distances are given in Tables 1 and 2 respectively.* A perspective view of the structure is shown in Fig. 1. This structure contains a set of slightly puckered layers of $S(3)$ and $S(4)$ atoms parallel to (010) levels close to $y=0$ and $\frac{1}{2}$; these layers are denoted here as A layers. There are other kinds of layers at approximately $y=0.15$ and 0.35 in which both Ce and S ions

[^0]Table 1. Positional parameters with estimated standard deviations in parentheses

	x	y	z
	x	y	$(1272(4)$
$\mathrm{Ce}(1)$	$0.127286(2)$	$0.2241(5)$	
$\mathrm{Ce}(2)$	$0.3726(3)$	$0.3618(2)$	$0.7302(7)$
$\mathrm{S}(1)$	$0.1208(14)$	$0.3201(6)$	$0.2465(30)$
$\mathrm{S}(2)$	$0.3690(16)$	$0.1858(6)$	$0.7433(27)$
$\mathrm{S}(3)$	$0.3863(14)$	$0.0060(9)$	$0.1469(27)$
$\mathrm{S}(4)$	$0.1034(15)$	$0.0047(15)$	$0.6649(26)$

Table 2. Interatomic distances (\AA) with estimated standard deviations in parentheses

$\mathrm{Ce}(1)-\mathrm{Ce}(1)$	$4.057(5)$	$\mathrm{S}(1)-\mathrm{S}(1)$	$4.05(2)$
	$4.489(6)$		$4.09(2)$
$\mathrm{Ce}(1)-\mathrm{Ce}(2)$	$4.621(5)$	$\mathrm{S}(1)-\mathrm{S}(2)$	$3.59(2)$
$\mathrm{Ce}(1)-\mathrm{S}(1)$	$2.95(1)$		$3.64(2)$
$\mathrm{Ce}(1)-\mathrm{S}(2)$	$2.99(1)$	$\mathrm{S}(1)-\mathrm{S}(3)$	$3.26(2)$
	$2.88(1)$	$\mathrm{S}(1)-\mathrm{S}(4)$	$3.74(2)$
	$2.94(1)$	$3.52(2)$	
	$3.12(2)$		$3.75(2)$
$\mathrm{Ce}(1)-\mathrm{S}(3)$	$3.16(1)$	$\mathrm{S}(2)-\mathrm{S}(2)$	$4.05(2)$
$\mathrm{Ce}(1)-\mathrm{S}(4)$	$3.10(1)$		$4.09(2)$
	$2.83(2)$	$\mathrm{S}(2)-\mathrm{S}(3)$	$3.53(2)$
$\mathrm{Ce}(2)-\mathrm{S}(1)$	$3.16(2)$		$3.96(2)$
	$2.88(1)$	$\mathrm{S}(2)-\mathrm{S}(4)$	$3.52(2)$
	$2.99(1)$		$3.53(2)$
	$3.01(1)$	$\mathrm{S}(3)-\mathrm{S}(3)$	$4.09(2)$
$\mathrm{Ce}(2)-\mathrm{S}(2)$	$3.02(1)$		$4.14(2)$
$\mathrm{Ce}(2)-\mathrm{S}(3)$	$2.89(1)$	$\mathrm{S}(3)-\mathrm{S}(4)$	$2.18(2)$
	$3.01(1)$		$3.03(2)$
$\mathrm{Ce}(2)-\mathrm{S}(4)$	$3.08(1)$		$3.13(2)$
	$2.93(1)$		$3.33(2)$
	$3.28(2)$	$\mathrm{S}(4)-\mathrm{S}(4)$	$4.09(2)$
			$4.11(2)$

Fig. 1. A perspective view of part of the structure. The large circles represent S ions and the small circles Ce . Approximate directions of the axes are shown in the figure. The layers A, B and C are explained in the text.
are closely packed. If these layers are named B and C layers respectively, the whole structure is expressed by a repetition of the sequence of $A B C A C B A$ layers.

The structure of monoclinic CeS_{2} is of the same type as that of CeSe_{2} (Ring \& Tecotzky, 1964). The structure of CeSe_{2} has been precisely analysed (Marcon \& Pascard, 1968). If the layers are stacked in the order $A B C A B C A$, the monoclinic phase is formed. In this case the crystal axes and the lattice parameters for the orthorhombic and monoclinic cells are related by $a_{\text {mono }}=a_{\text {orth }}, b_{\text {mono }}=c_{\text {orth }}$ and $2 c_{\text {mono }}=b_{\text {orth }}$.

In both the monoclinic and orthorhombic phases, each Ce atom is coordinated to nine S atoms. All S ions in the A layer form so-called dumb-bell pairs and the $\mathrm{S}-\mathrm{S}$ distance in the pair is $2.18 \AA$. The S ions in the B and C layers and those in neighbouring layers are separated by distances of 3.03 to $4.14 \AA$.
The compound LaS $_{1+x}$ also crystallizes in an orthorhombic structure when the ratio La / S is close to $\frac{1}{2}$ (Ring \& Tecotzky, 1964). Although no precise analysis of the structure of orthorhombic LaS_{2} has been made, a resemblance between the X-ray powder diffraction pattern of LaS_{2} and that of orthorhombic CeS_{2} suggests that the atomic arrangement of LaS_{2} would be similar to that of CeS_{2} shown in the present work.

References

Ashida, T. (1973). The Universal Crystallographic Computing System - Osaka. The Computation Center, Osaka
Univ.

Flahaut, J. \& Guittard, M. (1956). C. R. Acad. Sci. 243, 1419-1422.
International Tables for X-ray Crystallography (1962). Vol. III, pp. 201-209. Birmingham: Kynoch Press.
Marcon, J. P. \& Pascard, R. (1968). C. R. Acad. Sci. Sér. C, 266, 270-272.

Picon, M. \& Patrie, M. (1956). C. R. Acad. Sci. 243, 1769-1772.
Ring, S. A. \& Tecotzky, M. (1964). Inorg. Chem. 3; 182185.

Yanagisawa, Y. \& Kume, S. (1973). Mater. Res. Bull. 8, 1241-1246.

Acta Cryst. (1979). B35, 139-140

Structure of the Bismuth Chloride Sulphide $\mathbf{B i}_{4} \mathbf{C l}_{2} \mathbf{S}_{5}$

By Volker Krämer
Kristallographisches Institut der Universität, Hebelstrasse 25, D-7800 Freiburg, Federal Republic of Germany

(Received 31 August 1978; accepted 9 October 1978)

Abstract

Bi}_{4} \mathrm{Cl}_{2} \mathrm{~S}_{5}\), rhombohedral, $R \overline{3}, a=19.804$ (5), $c=12.359$ (3) $\AA, Z=15, V=4197.4 \AA^{3}, D_{c}=6.33$ $\mathrm{Mg} \mathrm{m}^{-3}, \lambda\left(\right.$ Mo $\left.K_{11}\right)=0.71069 \AA, \mu=60.89 \mathrm{~mm}^{-1}$, $F(000)=6690$. Systematic absences $h k l,-h+k+l=$ $3 n$. Final $R=0.056$. The structure has: (a) statistical occupancy of the anions sites by S and Cl ($\mathrm{S}+\mathrm{Cl}=X$); (b) unusual $\mathrm{Bi}-X$ coordination polyhedra. One Bi has nine X neighbours at $2 \cdot 88,2 \cdot 90$, and $3.44 \AA$; the remaining threc are irregularly surrounded by eight X between 2.62 and $3.66 \AA$.

Introduction. Besides BiHalS ($\mathrm{Hal}: \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$) and the halogen-poor $\mathrm{Bi}_{19} \mathrm{Hal}_{3} \mathrm{~S}_{27}$, only $\mathrm{Bi}_{4} \mathrm{Cl}_{2} \mathrm{~S}_{5}$ could be prepared (Krämer, 1976a). The analogous bromide, iodide, or compounds with other $\mathrm{S} / \mathrm{Hal}$ ratios seem not to exist at the S-rich parts of the corresponding $\mathrm{Bi}_{2} \mathrm{~S}_{3}-$ BiHal_{3} systems. To elucidate the structural relationships between $\mathrm{Bi}_{4} \mathrm{Cl}_{2} \mathrm{~S}_{5}$ and the above compounds its crystal structure was determined.

The vapour-grown crystals were black, elongatedhexagonal prisms. Intensities from a single crystal (56 $\times 65 \times 300 \mu \mathrm{~m}$) were collected on an automatic fourcircle diffractometer (Enraf-Nonius CAD-4) with graphite-monochromatized Mo K_{Ω} radiation and an $\omega-$ 2θ scan mode.

The correct space group $R \overline{3}$, replacing the previously reported $R \overline{3} \mathrm{~m}, R 3 \mathrm{~m}$, or $R 32$ (Krämer, 1976a), was determined by comparison of the intensity distributions in point groups $\overline{3}$ and $\overline{3} \mathrm{~m}$. The former yields an internal R of 8.7%, the latter 52%.

Calculations were performed with the XRAY (Stewart, Machin, Dickinson, Ammon, Heck \& Flack, 1976) and MULTAN systems (Main, Lessinger, Woolfson, Germain \& Declercq, 1977). 3052 independent reflexions were measured, 1153 of which had $I>$ $3 \sigma(I)$. Intensities were corrected for absorption by the program $O R A B S$, which computes transmission factors and mean path lengths by Gaussian integration.

The four Bi positions were located with MULTAN. Subsequent Fourier maps yielded six anion positions. Refinement on all positional, isotropic extinction, and anisotropic thermal parameters resulted in a final $R=$ 0.056^{*} and an average shift/error of 1.4×10^{-2}.

[^1]Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$

	x	y	z
	x	y	
Bi(1)	$2186(1)$	$307(1)$	$770(2)$
$\operatorname{Bi}(2)$	$2124(1)$	$259(1)$	$3932(2)$
$\operatorname{Bi}(3)$	$1730(1)$	$2387(1)$	$2512(2)$
$\operatorname{Bi}(4)$	0	0	$2666(5)$
$X(1)$	$817(6)$	$1520(6)$	$859(10)$
$X(2)$	$3041(7)$	$2213(7)$	$752(11)$
$X(3)$	$4502(6)$	$4109(6)$	$783(9)$
$X(4)$	$4994(8)$	$2519(8)$	$990(10)$
$X(5)$	$2529(7)$	$3714(8)$	$986(10)$
$X(6)$	$758(6)$	$1366(7)$	$4009(10)$

Table 2. Interatomic distances (\AA)

$\operatorname{Bi}(1)-X(1)$	$2.73(2)$
$X(2)$	$2.66(2)$
	$3.95(3)$
$X(4)$	$3.34(1)$
$X(5)$	$3.41(1)$
$\operatorname{Bi}(3)-X(1)$	$2.70(1)$
$X(2)$	$3.53(2)$
$X(3)$	$2.62(2)$
	$3.05(2)$
$X(4)$	$3.07(2)$
$X(5)$	$2.97(1)$
	$3.50(2)$
$X(6)$	$2.71(1)$

$\operatorname{Bi}(2)-X(2)$	$3.08(1)$
$X(3)$	$2.70(1)$
	$3.66(2)$
$X(4)$	$2.62(2)$
$X(5)$	$3.28(3)$
$X(6)$	$2.65(2)$
	$3.20(2)$
$\operatorname{Bi}(4)-X(1)$	$3.44(1) \times 3$
$X(4)$	$2.90(1) \times 3$
$X(6)$	$2.88(1) \times 3$

(c) 1979 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33904 (3 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33943 (25 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU. England.

